
50 The Delphi Magazine Issue 49

ADO Support In Delphi 5
by Guy Smith-Ferrier

In Issue 46 I wrote an article
describing how to make use of

ActiveX Data Objects in Delphi 4
using the ADO type library. I men-
tioned then that Delphi 5 was very
likely to include direct support for
ADO and I am very pleased to say
that that is exactly what happened.
This article investigates the new
ADO support in Delphi 5.

First, the bad news. The ADO
components are only available in
the Enterprise version of Delphi 5
(the new name for the
Client/Server Edition). Fortu-
nately, Delphi Professional devel-
opers can buy an option pack
called ADO Express, which
includes the ADO components, at a
cost of £129. [Editor’s comment: I
am very disappointed indeed that
Inprise have taken this route,
against specific advice to the con-
trary, especially as the BDE seems
clearly to be on the way out. Never-
theless, there are cheaper ways to
get ADO support, including the
freeware TADODataSet from www.
alohaoi.com/ADODB/.]

Assuming you have the Enter-
prise version then there is a new
ADO page on the palette containing
the ADO classes listed in Table 1.

Getting started with ADO is as
simple as getting started with the
BDE. Start a new application. Drop
a TADOTable on to a form. Set the
ConnectionString to:

Driver=

Microsoft Access Driver (*.mdb);

DBQ=C:\Program Files\

Microsoft Office\Office\

Samples\Northwind.MDB

Set the TableName to Customers, set
Active to True, add a TDataSource
and a TBGrid and connect them all
together and run the program.
Voila! An ADO application in
seconds.

Mmm. Well, this might fool your
boss but your average Delphi pro-
grammer is probably a bit more
sceptical (paranoid?) and right
now you should be thinking ‘I’m
sure there’s a bit more to it than
that’ and there is. So let’s start at
the beginning.

The Beginning
Delphi 5 ships with Microsoft Data
Access Components (MDAC) 2.1.
MDAC 2.1 includes ADO 2.1. Unfor-
tunately, Delphi 5 ships with
purely MDAC and not the MDAC

SDK. Although the Delphi 5 help
describes the Delphi ADO compo-
nents adequately, you are almost
certain to need the additional doc-
umentation which comes with the
MDAC SDK. Thankfully you can
download this from the Microsoft
website, at www.microsoft.com/
data/download.htm, where you
will need to download both the
MDAC SDK 2.0 (37.8Mb) and MDAC
SDK 2.1 Update (5.6Mb).

Table 2 shows the history of
ADO and which products include
which versions.

Sadly, Microsoft played a rather
horrific trick when naming ADO
versions. Instead of calling ADO
v2.0 simply ‘ADO v2.0’ as anyone
else would have, they decided to
call it ‘ADO v1.5 version 2.0’. The
idea was that version 2.0 is sort of
compatible with version 1.5 but in
reality it is just simply confusing.
The simplest way of determining
which version of ADO you have is
to drop a TADOConnection object
onto a form and add a button with
the following code:

Caption :=
ADOConnection1.Version;

BDE Versus ADO
There are several ways to explain
the new ADO support in Delphi 5.
The approach that I want to take is
to explain its features by compar-
ing it with something that nearly all
Delphi programmers know: the

TADOConnection A connection to an ADO data store

TADOCommand An ADO command object

TADODataSet A dataset retrieved from an ADO data store

TADOTable A dataset that encapsulates a table accessed through
an ADO data store

TADOQuery Provides the means for issuing SQL against an ADO
data store

TADOStoredProc Encapsulates a stored procedure in an ADO database

TRDSConnection A Remote Data Services connection

➤ Table 1

ADO Version Released Included With

1.1 Winter 1996 Windows 98, Internet Explorer

1.5 Autumn 1997 Windows NT4 Option Pack, Visual InterDev,
many version 5 MS programming languages

2.0 Summer 1998 Visual Studio 6, many MS programming
languages, a cut down version of SQL
Server

2.1 March 1999 Delphi 5, Office 2000, Internet Explorer 5,
SQL Server 7.0 and SQL Server 6.5 SP5

2.5 Later in 1999 Windows 2000

➤ Table 2

September 1999 The Delphi Magazine 51

BDE. I take this approach because
most Delphi programmers will be
thinking about their current pro-
ject (probably based on the BDE)
and wondering how much work
would be involved in converting it
over to ADO. So let’s start with the
ADO components.

Figure 1 shows the ADO class
hierarchy. Table 3 shows the BDE
components and their ADO equiva-
lents.

TADOConnection broadly per-
forms the same roles that
TDatabase does: it handles login
prompts, connection strings (the
ADO equivalent of alias names),
transaction processing and trans-
action isolation levels. However,
whereas TADOConnection handles
most of the same features that
TDatabase does it handles them all
in an ADO way instead of a BDE
way. This reveals the philosophy
behind all of the Delphi ADO
components. Whereas the ADO
components do use Delphi con-
cepts they do not use BDE
concepts. So, for example, TADO-
Connection.IsolationLevel is a
TIsolationLevel enumerated type
instead of the TOleENum (that is,
an integer) which you would get if
you used ADO’s Connection
interface directly and therefore
TADOConnection.IsolationLevel is

implemented in a Delphi way
instead of a pure COM way. But
TADOQuery has a Parameters prop-
erty instead of TQuery’s Params
property and TADOQuery.Parame-
ters is of type TParameters instead
of the BDE equivalent TParams and
therefore TADOQuery has been
implemented in an ADO way
instead of in a BDE way. The Delphi
developers have tried to keep as
much compatibility with original
Delphi BDE components as possi-
ble but where they had a choice
between keeping compatibility
with the BDE or keeping compati-
bility with ADO they have chosen
the latter. For my money, they have
made the right choice.

Staying on the theme of ‘making
the right choice’, I’ll digress for a
short moment. I am delighted to
say that the ADO components do
not hide the ADO interfaces upon
which they are based. Each ADO
component freely exposes the
interface which it wraps around.
For example, TCustomADODataSet
(upon which all of the ADO dataset
components are based) exposes a
RecordSet property which is the
ADO RecordSet interface it uses and
TADOConnection exposes a
ConnectionObject property which
is the ADO Connection interface
which it uses. Encapsulation pur-
ists will say that by exposing the
internal workings of a class you

➤ Figure 1

BDE Component ADO Component

TSession N/A

TDatabase TADOConnection

TTable TADOTable

TQuery TADOQuery

TStoredProc TADOStoredProc

TClientDataSet Any ADO DataSet component with MSPersist
OLE DB Provider

➤ Table 3

allow programmers to subvert a
class. This is true. However, the
advantages and disadvantages of
making the interface available are
the same as making the BDE
handle available in the BDE com-
ponents. Although I am sure that I
will receive mail on this one, I urge
you to make the same decision
when designing your own compo-
nents.

OLE DB Providers
Figure 2 shows the ADO structure.

Delphi ADO components encap-
sulate ADO interfaces. ADO inter-
faces encapsulate OLE DB
interfaces. OLE DB Providers (the
ADO equivalent of BDE drivers) do
the actual work of communicating
with the data either directly or by
using the RDBMS’s API. Table 4
shows the OLE DB Providers
which come with ADO.

Clearly, this means that Access,
MS SQL Server and Oracle all have
direct support and all other
RDBMSs have support only via
ODBC or via an OLE DB Provider
supplied by the relevant vendor.
As I mentioned in the last article
the Oracle OLE DB Provider is writ-
ten by Microsoft and Oracle have
no intention of writing their own
OLE DB Provider as they believe
the correct solution is to use
Oracle Objects For OLE (OO4O).
You can draw your own conclu-
sions from that. InterBase fans will
notice that there is no OLE DB Pro-
vider for InterBase. Fortunately,
one is promised for InterBase 6.

Connection Strings
Connection strings are the life
blood of ADO. Connection strings

➤ Figure 2

52 The Delphi Magazine Issue 49

are to ADO what alias names are to
the BDE. All ADO datasets have a
connection string and it can be as
simple as:

DSN=Northwind DSN

where Northwind DSN is an ODBC
Datasource Name which I have set
up for the Northwind.MDB Access
database supplied with Access,
Visual Basic and Microsoft Office.

However, unless you are using
ODBC it is unlikely that you will get
away with such a simple connec-
tion string. ADO looks for four
arguments in the connection string
(arguments are separated by semi
colons): provider, file name,
remote provider and remote
server. The last two are used for
RDS which I am not covering in this
article. Provider is the name of the
OLE DB Provider and it defaults to
MSDASQL (the ODBC OLE DB Pro-
vider). File name is a Data Link file
which I will come back to later. All
other arguments (such as the DSN

Provider Driver Description

ODBC Drivers MSDASQL Existing ODBC drivers

Jet 4.0 Microsoft.Jet.SQLOLEDB.4.0 MS Access databases

SQL Server SQLOLEDB MS SQL Server databases

Oracle MSDAORA Oracle databases

Directory Services ADSDSOObject Resource data such as Active Directory (useful in NT5)

Index Server MSIDXS MS Index Server (indexed data on web sites)

Site Server Search MS Site Server (data on websites)

Data Shape MSDataShape Hierarchical record sets (master/detail record sets)

Persisted Recordset MSPersist Locally saved record sets (briefcase applications)

Simple Provider MSDAOSP For creating your own providers for simple text data

➤ Table 4
argument in the previous example)
are passed on from ADO to the OLE
DB Provider. Different providers
look for different arguments, but
Table 5 shows the arguments
which the ODBC OLE DB provider
looks for.

The SQL Server OLE DB Provider
simply looks for Server, Database,
UID and PWD arguments.

Delphi’s ADO components all
have a ConnectionString property
which is a string into which you
can just type your connection
string. Alternatively, Connection-
String can be built using the
ConnectionString editor which ulti-
mately links to Microsoft’s own
Data Link editor. In real world
development, though, you are just
as unlikely to set ConnectionString
properties on individual dataset
components as you are to set the
DatabaseName property of a TTable
or a TQuery to an alias name for BDE
application development. Instead
you would create a TADOConnection
component just as you would have
created a TDatabase component.
You set the TADOConnection
component’s ConnectionString
property and then set each ADO

DSN or Data Source The Data Source Name

Driver The ODBC Driver Name

DefaultDir The directory for dBase files

DBQ The path and name of the database

Server The server name

Database The database name

UID The user ID

PWD The password for the user ID

component’s Connection property
to the TADOConnection component.
TCustomADODataSet’s Connection
and ConnectionString properties
are mutually exclusive, so setting
one property clears the other.
TADOConnection also has a Provider
property which is the name of the
OLE DB Provider used. This is
automatically set after the
ConnectionString is changed.

Data Link Files
Data Link files are simply connec-
tion strings stored in a file. The file
is in INI file format and has the .UDL
extension. As such you can see
UDL files as small pieces of
IDAPI32.CFG. In BDE terms
IDAPI32.CFG is the equivalent of all
of the UDL files on a hard disk (plus
additional global configuration
information). However, whereas
IDAPI32.CFG is considered by most
programmers to be a private file
which is rather definitely the
domain of the application pro-
grammer or, perhaps, the DBA,
Microsoft is not presenting UDL
files in the same light. Microsoft
appears to positively encourage
users to dive into UDL files and
start fiddling with their contents.
Maybe this is just a case of getting
used to a new philosophy, but
right now this has to be my
number one reason for not using
UDL files.

TADOConnection
As has already been mentioned,
TADOConnectionplays the same role
as TDatabase. TDatabase, however,
is a BDE component and does not

➤ Table 5

54 The Delphi Magazine Issue 49

feature in an ADO application.
Table 6 shows the TADOConnection
properties.

Although TADOConnection and
TDatabase both inherit directly
from TCustomConnection, TCustom-
Connection has very few properties
and methods and so TADO-
Connection and TDatabase share
little in common syntactically. Spe-
cifically, TADOConnection does not
support the following TDatabase
properties: AliasName, Database-
Name, Directory, DriverName, Exclu-
sive, Handle, HandleShared, IsSQL-
Based, KeepConnection, Locale,
Params, Session, SessionAlias,
SessionName, ReadOnly, Temporary,
TraceFlags and TransIsolation.

This isn’t a criticism of the ADO
components, instead it is intended
to provide an indication of the fact
that we’re not in Kansas anymore.
Of course, to present TADO-
Connection simply in terms of its
compatibility with TDatabase is to
deny the features it has which
TDatabase does not. Inherent in all
ADO components is the Properties
property which is a direct link to
ADO’s Properties collection of
dynamic properties. This property
gives you access to a mile of addi-
tional properties which are
dependant not only on the ADO
component to which they refer but
also to the OLE DB Provider in use.
Listing 1 shows the code which
reveals all of the dynamic proper-
ties in a TADOTable.

Alternatively, you can access
dynamic properties directly by
their name instead of by their ordi-
nal position. The following piece of
code allows you to see whether the
ADO recordset can fetch back-
wards:

Memo1.Lines.Add(
ADOTable1.Properties[
‘Fetch Backwards’].Value);

Another very useful TADO-
Connection feature is the ability to
access schema information easily.
TADOConnection has a method
called OpenSchema which accepts
four parameters. The first parame-
ter is the type of schema informa-
tion to retrieve. There are over 40
possible values to enter for this
first parameter but, to give you
some ideas, the values allow you to
specify a list of tables, a list of

Attributes Specifies automated transaction behavior

CommandCount Number of associated command components

Commands Array of associated TADOCommand components

CommandTimeout Specifies number of seconds to attempt execution of
a command (30)

Connected Specifies whether or not a connection is active

ConnectionObject The ADO Connection interface

ConnectionString Connection string

ConnectionTimeout Specifies number of seconds to attempt opening of a
connection (15)

ConnectOptions Specifies whether a connection is synchronous or
asynchronous

CursorLocation Specifies whether to use client-side or server-side
cursor library

DataSetCount Number of active datasets associated with the
connection component

DataSets Array of active datasets associated with the
connection component

DefaultDatabase The database used if the database in
ConnectionString is unavailable or not specified

Errors The ADO Errors collection from the most recent error

InTransaction Indicates whether a transaction is in progress

IsolationLevel Specifies the transaction isolation level for
transactions

LoginPrompt Specifies whether a login dialog appears immediately
before opening a new connection

Mode Indicates the permissions available to a connection

Properties The ADO Properties collection of dynamic properties

Provider Specifies the provider for the ADO connection

State Indicates the current state of the ADO connection

Version Indicates the version of ADO used

➤ Table 6

columns for a given table, a list of
primary keys, a list of indexes, a
list of views and a list of SQL fea-
tures supported. The second and
third parameters qualify the infor-
mation being retrieved and the
fourth parameter is the
TADODataSet into which the result-
ing information is placed. So if you
execute the following code:

ADOConnection1.OpenSchema(
siTables,
EmptyParam, EmptyParam,
ADODataSet1);

and connect ADODataSet1 to a
TDataSource and connect a grid to

var
intProperty: integer;
strValue: string;

begin
Memo1.Clear;
for intProperty:=0 to ADOTable1.Properties.Count - 1 do begin
strValue:=ADOTable1.Properties[intProperty].Value;
Memo1.Lines.Add(
ADOTable1.Properties[intProperty].Name + ' = ' + strValue);

end;
end;

➤ Listing 1

September 1999 The Delphi Magazine 55

the TDataSource you will see a list of
tables for the current connection.

As mentioned earlier TADO-
Connection has properties and
methods for transaction process-
ing. These serve to illustrate
another fundamental difference
between ADO and the BDE.

TADOConnection has BeginTrans,
CommitTrans and RollbackTrans
methods and IsolationLevel and
InTransaction properties. If you
are familiar with transaction pro-
cessing with TDatabase you can
guess how these might work. One
difference, however, is that
TADOConnection.BeginTrans returns
the transaction nesting level of the
new transaction and thus allows
you to nest transactions. But the
difference between ADO and the
BDE that I want to highlight is that
ADO makes no attempt to add
transaction processing where the
driver does not already support it.

Whereas the BDE attempts to
add transaction processing (of a
sort) for Paradox and dBase data-
bases, ADO makes no such attempt
and simply returns ‘The operation
requested by the application is not
supported by the provider’.

The same is true for
bidirectional cursors. In general
this is true for all features in ADO
and therefore not only is the level
of portability of your application
from one database engine to
another potentially lower than an
application based on BDE but also
ADO places a greater responsibil-
ity on the programmer for under-
standing the different databases
and their drivers than the BDE
does.

ADO DataSets
Delphi 5’s ADO data set compo-
nents all inherit from TCustom-
ADODataSet, which does nearly all of
the work for TADOTable, TADOQuery
and TADOStoredProc.

These three components actu-
ally do very little and simply add
one or two properties or methods
which are specific to TTable, TQuery
or TStoredProc. As such it is sim-
pler to look at TCustomADODataSet
than at each of the three compo-
nents in turn. Table 7 shows the
properties of TCustomADODataSet.

Clearly, TCustomADODataSet and
TDBDataSet (on which TTable,
TQuery and TStoredProc are based)
inherit from TDataSet and so a very
large part of your regular usage of
these components will require no
change in moving from the BDE to
ADO. Methods and properties such

as Open, First, Next, Prior, Last and
EOF are common to all datasets.
However, TADOTable is not compati-
ble with TTable and vice-versa.

To give you an idea of the level of
portability you can expect, the

BlockReadSize Determines how many record buffers are read in each block

CacheSize Determines how many rows the recordset keeps in its
buffer (1)

CanModify Indicates whether the underlying recordset permits write
access

CommandText Specifies a command to be executed

CommandTimeout Specifies number of seconds to attempt execution of a
command (30)

CommandType Specifies the type of command to execute

Connection Specifies the ADO connection component to use

ConnectionString Specifies the connection information for the data store

CursorLocation Specifies whether to use client-side or server-side cursor
library

CursorType Type of cursor to use for a recordset

DataSource Alternative to MasterSource property

ExecuteOptions Set of TExecuteOptions

Filter Textual filter condition

FilterBookmarks Filters a data set to just rows with pre-defined bookmarks

Filtered Activates the filter condition

FilterGroup Filters a recordset based on row update status

IndexDefs Collection of index definitions

IndexFieldCount Number of fields that comprise the current key

IndexFields Array of fields of the current index

IndexName Name of currently active index

LockType The lock type used when opening a dataset (ltOptimistic)

MarshalOptions Specifies which records are marshaled back to the server

MaxRecords Maximum rows to return in a result set (0, i.e. no limit)

ParamCheck Should the Parameters list be regenerated when the SQL
changes

Parameters Collection of parameters for SQL statement

Prepared Should the command be prepared before execution (False)

Properties The ADO Properties Collection object

Recno The ordinal position of the record within the result set

RecordCount Number of rows in the result set

Recordset The ADO Recordset object

RecordsetState The current state of the ADO dataset component

RecordSize The size of a record in the dataset

RecordStatus The status of the current record

Sort Specifies the sort order of the recordset

StoreDefs Indicates whether the table’s field and index definitions
persist with the data module or form

➤ Table 7

56 The Delphi Magazine Issue 49

following TDBDataSet properties
are not supported by TCustom-
ADODataSet:

AutoRefresh, CacheBlobs,
CachedUpdates, Database,
DatabaseName, DBHandle,
DBLocale, DBSession,
ExpIndex, KeySize,
Locale, SessionName,
UpdateMode, UpdateObject,
UpdateRecordTypes,
UpdatesPending.

Furthermore the following TTable
properties are not supported by
TADOTable:

DefaultIndex, Exclusive,
Exists, Handle, IndexFiles,
KeyExclusive, KeyFieldCount,
TableLevel, TableType.

One of the differences which could
have a great impact on portability
is the loss of cached updates.
Clearly cached updates are imple-
mented by the BDE and so you
couldn’t expected to see them
implemented in ADO components.
However, all is not lost. ADO sup-
ports ‘batch updates’ which are
very similar to cached updates.
Instead of having a CachedUpdates
property which is set to TrueADO’s
batch updates are initiated by
opening a data set which has
LockType set to ltBatchOptimistic.
Instead of calling ApplyUpdates or
CancelUpdates you would call
UpdateBatch or CancelBatch.

BDE Tools
One of the downsides of switching
to ADO is that you will have to
throw away many of your favourite
BDE tools. Table 8 shows a list of

BDE Tool
Works With ODBC
Drivers via BDE Comments / Equivalents

Database Desktop No Database Desktop cannot be used with ADO as it uses BDE aliases only

Database Explorer Yes Database Explorer can only be used with ADO ODBC data sources

SQL Monitor No SQL Monitor is fundamentally based on SQL Link drivers so will not
work with ADO. Use Visual Studio Analyzer instead

DataPump Yes DataPump can only be used with ADO ODBC data sources. TBatchMove
cannot be used with ADO because its Source property is TBDEDataSet
and its Destination property is TTable.

SQL Builder Yes SQL Builder can only be used with ADO ODBC data sources. However,
SQL Builder is not on the context menu for TADOQuery.

InstallShield Express For Delphi 5 N/A InstallShield can install Delphi 5 ADO applications but does not have
any specific provision for installing ADO itself

BDE Administrator N/A ODBC Data Source Administrator

➤ Table 8
BDE tools and how applicable they
are to ADO.

The general rule of thumb is that
if the tool supports ODBC and you
have an ODBC driver for your data
source then you can still use the
tool.

ADOX, ADOMD And JRO
Sometimes I feel that there is noth-
ing that Uncle Bill likes more than a
good acronym. Like any good
Microsoft technology ADO is full of
them. ADOX, ADOMD and JRO are
separate but related object models
to ADO. ADOX is ADO Extensions
For DDL And Security. It includes
Catalog, Tables, Indexes, Keys, Col-
umns, Views, Procedures, Users,
Groups and more and is a database
independent solution to the
myriad of different SQL DDL (and
to some extent DCL) dialects.
ADOMD is ADO Multi-Dimensional
and is designed to integrate with
On Line Analytical Processing serv-
ers. ADOMD fulfils the same pur-
pose as Delphi’s own decision
cubes and Excel’s pivot tables. JRO
is Jet and Replication Objects and it
allows you to manipulate replica-
tion features and other features of
an Access database (no other data-
base is supported).

Unfortunately, Delphi 5 has no
direct support for any of these
technologies. There are no
TADOView components and no
TADOUser components, but I would
put good money on them arriving
in a future version. Until then you
can solve the problem of lack of
direct support using the same
method as I did in my previous arti-
cle by importing the appropriate

type libraries. Alternatively some
Delphi third party vendors
support ADOX directly.

Summary
It is great to see Borland support-
ing ADO in Delphi 5. It is a testa-
ment to the design of the VCL’s
data access components that the
user interface can so easily switch
from existing BDE components to
the new ADO components.

However, my verdict on the por-
tability of code from BDE compo-
nents to ADO components is not as
good. Obviously the level of porta-
bility can only be assessed on a
case by case basis but I would be
surprised if any real world applica-
tion survived without any
changes. In addition the transition
from BDE to ADO requires you not
only to learn new tools but elimi-
nates the experience you have
gained from years of using the
BDE. This isn’t to say that you
shouldn’t use ADO but simply to
point out how much work is
involved in learning a new data-
base access layer.

In this article I hope to have
given you an idea of what you can
expect from Delphi 5’s ADO sup-
port but I have not covered ADO in
depth and you should expect more
articles on the myriad of ADO
topics in future issues.

Guy Smith-Ferrier is Technical
Director of Enterprise Logistics
Ltd (www.EnterpriseL.com), a
training company specialising in
Delphi. He can be contacted at
gsmithferrier@EnterpriseL.com

	The Beginning
	BDE Versus ADO
	OLE DB Providers
	Connection Strings
	Data Link Files
	TADOConnection
	ADO DataSets
	BDE Tools
	ADOX, ADOMD And JRO
	Summary

